DOI: https://doi.org/10.32515/2664-262X.2019.1(32).25-35

Upgrading the Mathematical Model of Raw Meat Comminuting Process in Flow Cutter

Sergii Verbytskyi, Olexandr Batrachenko, Nadiya Filimonova

About the Authors

Sergii Verbytskyi, PhD in Technics (Candidate of Technics Sciences), Institute of Food Resources of NAAS, Kyiv, Ukraine, e-mail: verb@ipr.net.ua

Olexandr Batrachenko, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Cherkassy State Technological University, Cherkassy, Ukraine, e-mail: avbatrachenko1980@gmail.com

Nadiya Filimonova, PhD in Technics (Candidate of Technics Sciences), Cherkassy State Technological University, Cherkassy, Ukraine, e-mail: nvfilimonova2015@gmail.com

Abstract

The proposed article aims at analyzing existing technical means of continuous action for raw meats comminution and studying the features of mathematical modeling of this process. The aim is also to evaluate the possibility and feasibility of improving the existing mathematical model of raw meats comminution in a rotary flow cutter with a corresponding development of the formula for determining the power of the device specified. The analysis of existing technical means of continuous action for raw meats comminution has been performed; a comparative characteristic of the two most commonly used design schemes of flow cutters has been given, namely: “knife-grate” and “rotor-stator”. The features of mathematical modeling of the process of raw meats comminution in a rotary flow cutter are analyzed. The formula for calculating the integrated power is given, this being proposed to be upgraded by taking into account the flow characteristics of the main structures of the feed bins, the comminuting appliances for raw meats (flow cutters) are equipped with. It is taken into account that the best characteristics of meat raw materials delivery for comminution have asymmetrical bins with a vertical wall, however the design of a bunker in the shape of a truncated cone was taken as the basic one, for which the feed stability coefficient proposed has the numerical value of 1. The numerical values of the feed stability coefficient for different feed bins are also presented. The ways of further development of research were determined aiming at further improving the formula of integrated power of flow cutter by a universal component that would take into account all possible designs of feed bins of flow cutters. Due to the incorporation of the results of studies of the flow characteristics of feeding bins, the mathematical model of the implementation of this process on a rotary flow cutter has been upgraded, the integrated formula for determining the power of such devices has also been modified accordingly. The refinement of the mathematical model of the fine grinding process takes into account the typical designs of feeding bins of flow cutters; therefore, further studies aiming at enhancing the integrated formula that will take into account the flow characteristics of feeding bins of any shape and geometric dimensions are promising.

Keywords

raw meats, comminution, rotary flow cutter, power, feeding bin, mathematical model

Full Text:

PDF

References

1. Hubka, V., & Eder, W. E. (2012). Theory of technical systems: a total concept theory for engineering design. Springer Science & Business Media in English.

2. Gnoevoi, A. V. (2010). Issledovanie matematicheskikh modelei mekhanicheskikh sistem: ucheb. posobie Research of mathematical models of mechanical systems: study guide. Moskow : MSUEE, P. 1. in Russian.

3. Verbytskyi, S. B., Starchevoi, S. O., & Maiboroda, Yu. V. (2011). Matematychna model protsesu tonkoho podribnennia miasnoi syrovyny na rotornomu emulsytatori bahatozubchastoi konstruktsii Mathematical model of the process of comminuting raw meats in a rotary flow cutter of multicog design. Visnyk ahrarnoi nauky – Bulletin of Agricultural Science, 9, 51-54 in Ukrainian.

4. Kunz, B. (2013). Lexikon der Lebensmitteltechnologie. Springer-Verlag in English.

5. Verbytskyi, S. B., Kopylova, E. V., Usatenko, N. F., & Kryzhska, T. A. (2019). Konstruktsiia i tekhnologicheskie osobennosti ispolzovaniia emulsitatora miasnogo syria Design and technological peculiarities of use of a flow cutter for meat. Vestnik Gosudarstvennogo universiteta imeni Shakarima goroda Semei – Bulletin of Shakarim University in Semei, 1(85), 18-22 in Russian.

6. Grudanov, V. Ia., Brench, A. A., Tkacheva, L. T., & Filippovich, M. O. (2010). Tonkoe izmelchenie miasnogo syria novym rezhushchim mekhanizmom v emulsitatorakh Comminution of raw meats with new cutting mechanism in flow cutters. Vestsi Natsyianalnoi akademii navuk Belarusi. Seriia agrarnykh navuk – News of the National Academy of Sciences of Belarus. Agrarian Sciences Series, 3, 105-109 in Russian.

7. Ryder, S. (2014). Effektive Prozesse sichern den Erfolg. Fleischwirtschaft, 1, 52-54 in English.

8. Smarandakhe, P. (2016). Emulsitator “INOTEC” – vysokoe kachestvo produkta i vpechatliaiushchaia ekonomia ”INOTEC” flow cutter – high quality of the product and impressive savings. Miasnoi riad – Meat Mall, 1, 14-16 in Russian.

9. Lisitsyn, A. B., Kozhevnikova, O. E., Pestov, N. V., Zakharov, A. N., & Dydykin, A. S. (2015). Sovremennoe tekhnologicheskoe oborudovanie dlia proizvodstva detskogo pitaniia na miasnoi osnove Modern technological equipment for manufacturing child foods on meat base. Miasnaia industria – Meat Industry, 7, 22-24 in Russian.

10. Grudanov, V. Ia., & Brench, A. A. (2017). Modelirovanie i optimizatsiia protsessov pererabotki selskokhoziaistvennoi produktsii Modeling and optimization of the processes of processing agricultural products. Minsk : BSATU in Russian.

11. Verbytskyi, S. B., Shevchenko, B. V., & Batrachenko, A. V. (2010). Izmelchenie miasnogo syria Grinding of raw meats. Miasnoi biznes – Meat Business, 5(89), 84-96 in Russian.

12. Sannik, U., Lepasalu, L., & Poikalainen, V. (2013). Interactions between size reduction and thermal processes during treatment of animal by-products. Agron. Res, 11(2), 513-520 in English.

13. Stephan Produktportfolio. Microcut. (2017). Hameln. Stephan Machinery. 8 in English.

14. Myroshnichenko, K. A., & Batrachenko, O. V. (2016). Vytratni kharakterystyky bunkeriv emulsytatoriv The flow characteristics of the hoppers emulsifiers. Visnyk Khmelnytskoho natsionalnoho universytetu. Tekhnichni nauky – Herald of Khmelnytskyi state university. Technical sciences, 5(241), 14-17 in Ukrainian.

15. Semikopenko, I. A., Voronov, V. P., Fadin, Iu. M., & Smirnov, D. V. (2015). Raschet obieomnogo raskhoda materiala cherez zagruzochnyi bunker desintegratora Calculation of volume flow rate of material through feeding bin of a desintegrator. Vestnik BGTU im. V. G. Shukhova – Herald of BSTU named after V. G. Shukhov, 1, 68-70 in Russian.

GOST Style Citations

  1. Hubka V., Eder W. E. Theory of technical systems: a total concept theory for engineering design. Springer Science & Business Media. 2012.
  2. Гноевой А. В. Исследование математических моделей механических систем : учеб. пособие. Москва : Изд-во МГУИЭ, Ч. 1. 2010. 307 с.
  3. Вербицький С. Б., Старчевой С. О., Майборода Ю. В. Математична модель процесу тонкого подрібнення м’ясної сировини на роторному емульситаторі багатозубчастої конструкції. Вісник аграрної науки. 2011. № 9. С. 51-54.
  4. Kunz B. Lexikon der Lebensmitteltechnologie. Springer-Verlag. 2013.
  5. Вербицкий С. Б., Копылова Е. В., Усатенко Н. Ф., Крыжская Т. А. Конструкция и технологические особенности использования эмульситатора мясного сырья. Вестник Государственного университета имени Шакарима города Семей. 2019. № 1(85). С. 18-22.
  6. Груданов В.Я., Бренч, А.А., Ткачева Л.Т., Филиппович М.О. Тонкое измельчение мясного сырья новым режущим механизмом в эмульситаторах. Весці Нацыянальной акадэміі навук Беларусі. Серыя аграрных навук. 2010. № 3. С. 105-109.
  7. Ryder S. Effektive Prozesse sichern den Erfolg. Fleischwirtschaft. 2014. № 1. S. 52-54.
  8. Смарандахе П. Эмульситатор «ИНОТЕК»-высокое качество продукта и впечатляющая экономия. Мясной ряд. 2016. № 1. С. 14-16.
  9. Лисицын А. Б., Кожевникова О. Е., Пестов Н. В., Захаров А. Н., Дыдыкин А. С.. Современное технологическое оборудование для производства детского питания на мясной основе. Мясная индустрия. 2015. № 7. С. 22-24.
  10. Груданов В. Я., Бренч А. А. Моделирование и оптимизация процессов переработки сельскохозяйственной продукции. Минск : БГАТУ, 2017. 280 с.
  11. Вербицкий С. Б., Шевченко В. В., Батраченко А. В. Измельчение мясного сырья. Мясной бизнес. 2010. № 5(89). С. 84-96.
  12. Sannik U., Lepasalu L., Poikalainen V. Interactions between size reduction and thermal processes during treatment of animal by-products. Agron. Res. 2013, 11(2), 513-520.
  13. Stephan Produktportfolio. Microcut. Hameln. Stephan Machinery. 2017. 8 S.
  14. Мирошніченко К. А., Батраченко О. В. Витратні характеристики бункерів емульситаторів. Вісник Хмільницького національного університету. Технічні науки. 2016. № 5(241). С. 14-17.
  15. Семикопенко И .А., Воронов В. П., Фадин Ю. М., Смирнов Д. В. Расчет объемного расхода материала через загрузочный бункер дезинтегратора. Вестник БГТУ им. В.Г. Шухова. 2015. № 1. С. 68-70.
Copyright (c) 2019 Sergii Verbytskyi, Olexandr Batrachenko, Nadiya Filimonova